后悔没早知道这些Python特性

枫铃3年前 (2021-07-09)Python282

实际上,在日常的工作中,我们很多需求,无论是常见的、还是不常见的,Python 都为我们提供了一些独特的解决方案,既不需要自己造轮子,也不需要引入新的依赖(引入新的依赖势必会增加项目的复杂度)。

但是 Python 有太多功能和特性被我们忽略了,导致我们在遇到问题的时候,没法第一时间作出良好的决策。

所以,干脆来一起扫清这些被我们忽略的 Python 死角。

装饰器的妙用
我们经常会想完成一些注册&调用的功能,比如我们有四个函数:

def add(a: int, b: int) -> float:
    return a + b

def sub(a: int, b: int) -> float:
    return a - b
 
def mul(a: int, b: int) -> float:
    return a * b
 
def div(a: int, b: int) -> float:
    return a / b

现在我们想将这四个函数和 +、-、*、/ 四个操作符绑定,那么我们该怎么做?

可能我们第一反应是这样:

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:857662006 寻找有志同道合的小伙伴,
互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
operator_map = {}
 

def add(a: int, b: int) -> float:
    return a + b

def sub(a: int, b: int) -> float:
    return a - b

def mul(a: int, b: int) -> float:
    return a * b

def div(a: int, b: int) -> float:
    return a / b

operator_map["+"] = add
 
operator_map["-"] = sub

operator_map["*"] = mul
 
operator_map["/"] = div

但这样写起来,有一个很大的问题就是太不美观了。因为直接对于 dict 的操作从实际上来讲可维护性是很差的,那么我们这个地方应该怎么做?

在改进这段代码之前,我们首先要明确 Python 中一个很重要的概念,即:函数/方法是:First Class Member 。用不精确的话来讲,就是函数/方法可以作为参数被传递、被使用。

举个例子:

import typing
 
def execute(func: typing.Callable, *args, **kwargs) -> typing.Any:
    return func(*args, **kwargs)

def print_func(data: int) -> None:
    print(data)

execute(print, 2)

大家可以看到我们将 print_func 这个函数作为参数传递给 execute 函数并被调用。

那么我们来改造下之前的代码:

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:857662006 寻找有志同道合的小伙伴,
互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
import typing

operator_map = {}
 
def add(a: int, b: int) -> float:
    return a + b 

def sub(a: int, b: int) -> float:
    return a - b
 
def mul(a: int, b: int) -> float:
    return a * b
 
def div(a: int, b: int) -> float:
    return a / b


def register_operator(operator: str, func: typing.Callable) -> None:
    operator_map[operator] = func

register_operator("+", add)
register_operator("-", sub)
register_operator("*", mul)
register_operator("/", div)

好了,大家看看,目前整体代码的可读性以及可维护性是不是改了很多?

但是我们现在的问题在于,每次都需要在单独调用一次 register_operator 函数,这样也太烦了吧!要不要再改进一下?要得。我们可以用装饰器来改进一下。

首先,看一个最简单的装饰器例子:

import functools
import typing
import time

def execute(func: typing.Callable) -> typing.Callable:
    @functools.wraps(func)
    def wraps(*args, **kwargs) -> typing.Any:
        start_time = time.time()
        result = func(*args, **kwargs)
        print("{}".format(time.time() - start_time))
        return result
 
    return wraps

@execute
def add(a: int, b: int) -> float:
    return a + b

我们能看到这段函数的意义是计算函数的执行时间。那么这个原理是什么?

实际上装饰器是一个语法糖,具体可以参见 PEP318 Decorators for Functions and Methods。

简而言之,实际上是 Python 替我们做了一个替换过程。以上面的例子为例,这个替换过程就是 add=execute(add) 。

好了,我们就用这个知识点来改进下之前的代码:

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:857662006 寻找有志同道合的小伙伴,
互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
import typing

operator_map = {}


def register_operator(operator: str) -> typing.Callable:
    def wraps(func: typing.Callable) -> typing.Callable:
        operator_map[operator] = func
        return func
 
    return wraps


@register_operator("+")
def add(a: int, b: int) -> float:
    return a + b


@register_operator("-")
def sub(a: int, b: int) -> float:
    return a - b

@register_operator("*")
def mul(a: int, b: int) -> float:
    return a * b


@register_operator("/")
def div(a: int, b: int) -> float:
    return a / b

这样我们这段代码的注册过程是不是就显得更优雅了?

嗯,是的!实际上 Python 中有很多特性会帮助我们的代码更简洁,更优美。

接下来这个例子很可能帮我们减轻工作量。

聊聊 OrderedDict

dict 是我们经常使用的一种数据解构。但是在 Python 3.6 之前 dict 都是无序的,即我插入的顺序,和数据在 dict 中存放的顺序并无关联(笔者注:Python 3.6 dict 有序只是新版实现的顺带产物,Python 3.7 正式作为 feature 被固定下来)。

但是很多时候,比如在验签等场景,我们需要保证 dict 数据存放顺序,和我们插入顺序是一致的。那么我们该怎么办?

老板有需求下来了,我们肯定不能告诉老板这个需求没法做。那我们就自己实现一个 ordereddict 吧。于是,想了想,写了如下的代码:

import typing

 
class OrderedDict:
    def __init__(self, *args, **kwargs):
        self._data = {}
        self._ordered_key = []

    def __getitem__(self, key: typing.Any) -> typing.Any:
        return self._data[key]

    def __setitem__(self, key: typing.Any, value: typing.Any) -> None:
        if key not in self._data:
            return
        self._data[key] = value
        self._ordered_key.append(key)

    def __delitem__(self, key: typing.Any):
        del self._data[key]
        self._ordered_key.remove(key)

通过额外维护一个 list 来维护 key 插入的顺序。这段代码,看似完成了我们的需求,但是实则存在很大问题。大家可以猜猜问题在哪?

3,2,1!

揭晓答案,这段代码利用 list 来保证 key 的有序性,在删除的时候, list 的删除操作,是一个时间复杂度 O(n) 的操作。换句话说,我们的删除操作随着内部数据的增多,所需的删除时间也变得越长。这对于某些性能敏感的场景是无法接受的。

那要怎么办呢?事实上,Python 在很早之前就已经内置了有序字典,即很多人可能都用过的 collections.OrderedDict 。

在 OrderedDict 中, Python 维护了一个双向链表解构,来保证插入的有序性,如下图所示:
在这里插入图片描述
在最左侧维护一个卫兵节点,卫兵节点的 next 指针恒指向于数据中最后插入的节点。那么插入新的数据时,我们将新的数据插入到卫兵节点之后,从而达成维护插入顺序的目的。

在删除的时候,通过额外维护的一个字典找到待删除的 key 所对应的节点。这个操作是 O(1) 的复杂度,然后大家都知道,双向链表删除一个节点的时间复杂度也是 O(1) 。通过这样保证我们在即便有大量数据的情况下,也能保证相应的性能。
好了,我们按照这个思路来做一个最简单的实现:

import typing`


class Node:`
    def __init__(self, key: typing.Any, value: typing.Any) -> None:`
        self.key = key`
        self.value = value`
        self.prev = None`
        self.next = None`
 
 
class OrderedDict:
    def __init__(self, *args, **kwargs):
        self._data = {}
        self._head = Node(None, None)
        self._last = self._head

    def __getitem__(self, key: typing.Any) -> typing.Any:
        if key in self._data:
            return self._data[key].value
        raise ValueError

    def __setitem__(self, key: typing.Any, value: typing.Any) -> None:
        if key not in self._data:
            return
        value_node = Node(key, value)
        next_node = self._head.next
        if not next_node:
            self._head.next = value_node
            value_node.prev = self._head
            self._last = value_node
        else:
            value_node.next = next_node
            next_node.prev = value_node
            value_node.prev = self._head
            self._head.next = value_node
        self._data[key] = value_node

    def __delitem__(self, key: typing.Any):
        if key not in self._data:
            return
        value_node = self._data[key]
        if value_node == self._last:
            self._last = value_node.prev
            self._last.next = None
        else:
            prev_node = value_node.prev
            next_node = value_node.next
            prev_node.next = next_node
            next_node.prev = prev_node
        del self._data[key]
        del value_node

(此段代码,如有错乱,烦请将浏览字体调小几号)

这只是一个 OrderedDict 的简化版,如果想完成一个完整的 OrderedDict 还有很多很多的 corner case 要去处理。不过现在,我们可以使用内置的数据结构去完成我们需求。怎么样,是不是有了一种幸福的感觉?

随意聊聊

通过今天的两个例子,我们发现 Python 提供了相当多的功能去帮助我们完成日常的工作与学习任务。同时通过去深入地了解 Python 内部的一些功能实现,以便我们能更好地去学习一些知识。

比如,上文提到的 OrderedDict 的实现,会让我们学到双头链表的一种非常典型的应用,与此同时,双头链表也会用于诸如 LRU 这样非常常用的数据解构的实现。所以,多去深入了解 Python 的方方面面,有助于我们整体能力的提升。

相关文章

Python高阶函数和eval函数

一、介绍 高阶函数:变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数。 二、具体...

6 个例子教你重构 Python 代码

1. 合并嵌套的 if...

Python实现跨文件全局变量的方法

Python 中 global 关键字可以定义一个变量为全局变量,但是这个仅限于在一个模块(py文件)中调用全局变量...

使用python实现阿里云动态域名解析DDNS

前言 前置条件 1、域名是在阿里云购买的 2、地址必须是公网地址,不然加了解析也没有用 简介 通过阿里云提供的SDK,然后...

不要再问我Python2和Python3的Unicode 问题啦!

写在之前 字符编码问题几乎是会跟随我们整个编程生涯的一大魔障,一不小心各种玄学的问题就会接踵而至,防不胜防,尤其是...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。