白话 Python 的函数式编程

枫铃3年前 (2021-06-26)Python242

今天和大家聊聊 Python 的函数式编程特性。所谓函数式编程,就是指代码中每一块都是不可变的(immutable),都是由 pure function 的形式组成。这里的 pure function 是指函数本身相互独立,互不影响,对于相同的输入,总会有相同的输出。也就是我们常说的没有副作用。举个很简单的例子,比如,对于一个列表,我想让列表中的元素值都变为原来的两倍,我们可以写成下面的形式:

def multiply_2(l):
  for index in range(0, len(l)):
    l[index] *= 2
  return l

这就不是一个 pure function,因为列表中元素的值被改变了,如果我调用 multiply_2() 这个函数多次,那么每次得到的结果都不一样。要想让其成为一个pure function,就得写成下面的形式,重新创建一个新的列表并返回。

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:857662006 
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
def multiply_2_pure(l):
  new_list = []
  for item in l:
    new_list.append(item * 2)
  return new_list

函数式编程的优点主要在于其 pure function 和不可变的特性使得程序更加健壮,易于 debug 和测试,缺点主要在于限制多,难写。当然 Python 不同于其他一些语言,比如 Scala,他并不是一门纯粹的函数式编程语言,但是 Python 也提供了一些函数式编程的特性,值得我们了解和学习。

Python 主要提供了这么几个函数 Map, Filter 和 Reduce,通常结合匿名函数 lambda 一起使用,我逐一介绍一下:

对于 Map(function, iterable) 函数,前面的例子提过,他表示对 iterable 中的每个元素运用 function 这个函数,最后返回一个新的可遍历的集合,比如上面对列表中每个元素乘2用map可以表示为

l = [1, 2, 3, 4, 5]
new_list = map(lambda x: x * 2, l) # [2, 4, 6, 8, 10]

我们再来看一下 Python 提供的函数式编程的接口的性能,就以 Map 为例,上述的例子还可以用 for 循环和 list comprehension 实现,我们来比较一下他们的速度:

python3 -mtimeit -s’xs=range(1000000)' 'map(lambda x: x*2, xs)'输出结果:2000000 loops, best of 5: 171 nsec per looppython3 -mtimeit -s’xs=range(1000000)' '[x * 2 for x in xs]'输出结果:5 loops, best of 5: 62.9 msec per looppython3 -mtimeit -s’xs=range(1000000)’ 'l = []' 'for i in xs: l.append(i * 2)'输出结果:5 loops, best of 5: 92.7 msec per loop

可以看到 map 是最快的,因为 map 函数是直接由 C 语言写的,运行时不需要通过 Python 解释器间接调用,因此运行速度最快。

对于 Filter(function, iterable) 函数,和 map 函数类似,function 同样表示一个函数对象,表示对 iterable 中的每个元素使用 function 判断,返回 True 或者 False,最后将返回 True 的元素组成一个新的可遍历的集合,比如我要返回一个列表中的所有偶数,可以写成

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:857662006 
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
l = [1, 2, 3, 4, 5]
new_list = filter(lambda x: x % 2 == 0, l) # [2, 4]

对于 Reduce(function, iterable) 函数,通常用于对一个集合做一些累积操作。function 同样是一个函数对象,规定他有两个参数,表示对 iterable 中的每个元素以及上一次调用后的结果运用 function 进行计算,因此最后返回的是一个单独的数值,比如,我想要计算列表元素的乘积,可以表示为:

l = [1, 2, 3, 4, 5]
product = reduce(lambda x, y: x * y, l) # 1*2*3*4*5 = 120

类似的,Filter,Reduce 的功能也可以用 for 循环或者 list comprehension 来实现,但是速度都不如 Filter 或者 Reduce。

通常来说,如果你想对一个集合中的元素进行一些操作,如果是一些非常简单的操作,比如相加,累积,那么我们优先考虑 Map、Filter、Reduce 或者 list comprehension 的形式。

在这两者之中,如果数据量非常大,比如机器学习的应用,那我们一般更倾向于函数式编程的表示,因为效率更高,如果数据量不多,并且你想要自己的程序更加 Pythonic(Python 化),那么运用 list comprehension 的情况也是很常见的。如果你要对集合中的元素做一些比较复杂的操作,考虑到代码的可读性,这时我们通常会使用 for 循环,因为更加清晰明了。

相关文章

Python69个内置函数分类总结

Python3解释器中内置了69个常用函数,属于底层的函数,它们到处可用,是新手学习的重要内容。 当然࿰...

10个python使用技巧

1. 用ZIP处理列表 假设要合并相同长度的列表并打印结果。同样有一种更通用的方式,即用zip()函数获得想要的结...

Python中的itertools.product

例子1:import itertools a = itertools.product([1,2,3],[100,200]) print(a) for...

排序算法的python实现

排序算法的python实现

冒泡排序 冒泡排序是比较简单的排序方法,它的思路是重复的走过要排序的序列,一次比较两个元素,如果顺序错误&#x...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。